
ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 1

ROD Test Stand SoftwareROD Test Stand Software

Wisconsin Group

Khang Dao, Damon Fasching, Brian Holmes,

Richard Jared, John Joseph, Mark Nagel,

Sriram Sivasubramaniyan, Linda Stromburg

 and Lukas Tomasek

Presented by Lukas Tomasek

(home institute: Institute of Physics AV CR, Prague)

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 2

OverviewOverview

• Test stand basic requirements and description

• Test stand software design

• Current software status, Host - Rod simulation

• Future plans

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 3

Basic requirementsBasic requirements

• Short term:

 - initial testing and debugging the standalone ROD,
 - initial system test, BOC and TIM configuration
 and monitoring,

• Long term:

 - production testing,
 - ROD maintenance.

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 4

Test Stand hardware and software toolsTest Stand hardware and software tools

• RODs, (TIM, ...),

• VME crate with NI VME-MXI-2 card,

• PC with NI PCI-MXI-2 interface card,

• MS Windows NT (2000) operating system,

• National Instruments LabWindows/CVI 5.5 development software,

• and the application program - Host software.

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 5

Test stand application programTest stand application program

• the programming language ANSI C,
• the programming style follows John Hill’s
 “Suggested Coding Rules” common for both the DSP
 and the Host side:

http://www-wisconsin.cern.ch/~atsiod/shared.html

• the code is shared in CVS repository
 (some header files common with DSP code).

The software design should be relatively independent
on the platform, so the main parts of the the code
could be used in the future version of the RCC.

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 6

Main application tasks:Main application tasks:

• similar to the future RCC

• ROD initialization and configuration:
- writing to RRFPGA flash memories and command registers,
 reading FPGA status registers;
- loading program for DSPs;
- BOC, TIM setup;

• ROD control; communication/data exchange with Rod:
- “fast” VmeCommandRegister bit commands;
- “primitive” commands => sending PrimitiveLists to Rod,
- reading reply data (ReplyLists) from Rod,

• ROD status monitoring:
- periodic checking RodStatusRegisters,
- readout error, info, diagnostic messages from

 the TextBuffers;

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 7

The primitives, input and output data formats, communication registers and
communication scheme are described in the “Communication Protocol”:

http://www-wisconsin.cern.ch/~atsiod/shared.html

See also Damon Fasching’s talk “Rod DSP Software” and
RCC requirements in John Hill’s talk “SCT ROD Crate DAQ”.

8

- Main data path
- Commands, control signals
- Status/error info
- Handshake/synchronization signals

ROD[n]

MASTER DSPMASTER DSP

HPI

VME

PRIMITIVE LIST
BUFFER_host

[n]

REPLY LIST
BUFFER_host

[n] E
R

R
O

R
B

U
F

F
E

R

IN
FO

B
U

F
F

E
R

D
IA

G
N

O
S

TI
C

B
U

F
F

E
R

REPLY LIST
PROCESSING

THREAD
[n]

TEXT BUFFERS
PROCESSING

THREAD
[n]

HOST CONTROL
THREAD

[n]
PRIMITIVE LIST

BUILDING
THREAD

[n]

PRIMITIVE LIST
BUFFER_host

[n]

REPLY LIST
BUFFER_host

[n] E
R

R
O

R
B

U
F

F
E

R

IN
FO

B
U

F
F

E
R

D
IA

G
N

O
S

TI
C

B
U

F
F

E
R

REPLY LIST
PROCESSING

THREAD
[n]

TEXT BUFFERS
PROCESSING

THREAD
[n]

HOST
COMMUNICATION

ROUTINE
[n]

HOST CONTROL
THREAD

[n]
PRIMITIVE LIST

BUILDING
THREAD

[n]

PRIMITIVE LIST
BUFFER_host

[n]

REPLY LIST
BUFFER_host

[n] E
R

R
O

R
B

U
F

F
E

R

IN
FO

B
U

F
F

E
R

D
IA

G
N

O
S

TI
C

B
U

F
F

E
R

REPLY LIST
PROCESSING

THREAD
[n]

TEXT BUFFERS
PROCESSING

THREAD
[n]

HOST
COMMUNICATION

ROUTINE
[n]

HOST CONTROL
THREAD

[n]
PRIMITIVE LIST

BUILDING
THREAD

[n]

PRIMITIVE LIST
BUFFER_host

[n]

REPLY LIST
BUFFER_host

[n] E
R

R
O

R
B

U
F

F
E

R

IN
FO

B
U

F
F

E
R

D
IA

G
N

O
S

TI
C

B
U

F
F

E
R

REPLY LIST
PROCESSING

THREAD
[n]

TEXT BUFFERS
PROCESSING

THREAD
[n]

HOST
COMMUNICATION

ROUTINE
[n]

HOST CONTROL
THREAD

[n]
PRIMITIVE LIST

BUILDING
THREAD

[n]

PRIMITIVE LIST
BUFFER_host

[n]

REPLY LIST
BUFFER_host

[n] E
R

R
O

R
B

U
F

F
E

R

IN
FO

B
U

F
F

E
R

D
IA

G
N

O
S

TI
C

B
U

F
F

E
R

REPLY LIST
PROCESSING

THREAD
[n]

TEXT BUFFERS
PROCESSING

THREAD
[n]

HOST
COMMUNICATION

ROUTINE
[n]

HOST CONTROL
THREAD

[n]
PRIMITIVE LIST

BUILDING
THREAD

[n]

PRIMITIVE LIST
BUFFER_host

[n]

REPLY LIST
BUFFER_host

[n] E
R

R
O

R
B

U
FF

-h
os

t[
n]

IN
FO

B
U

FF
-h

os
t[

n]

D
IA

G
N

O
S

T
IC

B
U

FF
-h

os
t[

n]

TEXT BUFFERS
PROCESSING

THREAD[n]

BUFFERS
HANDLER

[n]

HOST CONTROL
THREAD[n]

PRIMITIVE LIST
BUILDING

THREAD[n] COMMUNICATION
LOOP THREAD

HIGHER
INTELLIGENCE

(USER)

VME
CRATE
(RODs)

TEST STAND
SOFTWARE

(HOST)

C
S

S, S[n]

C, C[n]

REPLY LIST
PROCESSING

THREAD[n]

U
S

E
R

VMECommandReg RODStatusReg

Legend:

PRIMITIVE LIST
BUFFER

Host Program Layout and Host - Rod InterfaceHost Program Layout and Host - Rod Interface

REPLY LIST
BUFFER

ERROR BUFFER
INFO BUFFER

DIAGNOSTIC BUFF

MAIN PROCESS THREAD:MAIN PROCESS THREAD:
- GUI (LabWindows),
- HOST[n] SUPERIOR CONTROL,
- HOST[n] STATUS/ERROR INFO,
- CRATE CONTROL
- CRATE STATUS/ERROR INFO

C[N], S[n]

[n] - Rod/Host index {0,1…15}

Note: FPGA registers accessed via VME omitted

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 9

Host -Host - MasterDSP MasterDSP interface interface

• communication registers (direct VME access):
VmeCommandRegs - the Host “fast” bit commands, the communication

handshake bits; write/read access from Host, only read from
MasterDSP.

RodStatusRegs - status information, handshake bits;
 write/read from MasterDSP, read by Host.

• data buffers (VME-HPI access):
 PrimitiveListBuff - Host writes PrimLists, MasterDSP reads;
 ReplyListBuff - Master writes ReplyLists, Host reads.

• text buffers (VME-HPI access):
 Error, Info, Diagnostic Buffers (+corresponding textBuffStructs) -

- written by DSPs, read by Host.

The VME-HPI interface is shown in the simulation section (Pg. 36).

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 10

Software designSoftware design

• single process multithreaded application:

 - shared memory space -> simpler and faster synchronization and exchange
 of the information between the tasks than multiprocessing,
 doesn’t have big demands on the system resources,

 - multithreading/multitasking is necessary mainly because of the need
 of a “responsive” user interface,

 - multitasking should not increase only the performance but also
 the “robustness” of the system by moving slow and potentially
 dangerous operations like file reading/writing outside the polling loop
 to the working threads;

 - the drawback is a difficult debugging, relatively complicated synchronization
 between the threads can lead to deadlock (if not done properly).

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 11

Thread hierarchy(from the top):

• User - superior to everything (human being!/or any higher level controller),

• MainProcessThread (highest, can control all threads),

• HostControlThread[n] (can control all threads with the same index,
if it has a permission from MainThread),

• the rest are just “working” threads responsible for the low level data
transfers to and from ROD driven by the synchronization signals.

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 12

Host thread priorities - basic “antagonistic” rules:

• Process priority class - normal
 - PC should be able to run also other applications;

• All threads => normal priority
 - the Host software gets enough processor time slice by OS;
• MainProcessThread > the other threads (golden rule)!!
 - the user interface must be responsive at any moment!!
• CommunicationThread <= the other threads !!
 - CommunicationLoopThread is still active (there are no additional

delays inside), so it keeps the processor 100% busy. The other
threads are active always only for a limited time -> can have

 a higher priority than CommLoop, but the “multitasking” effect
 is suppressed then.
 If the working threads would have a lower priority there is
 a danger of lack of the processor time for them due to “frantically”
 running CommunicationLoop -> deadlock.

->the compromise - “default” values: MainThread one(or two) points
above the rest, which are all on the same - normal - level.

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 13

Basic synchronization mechanisms between the threads used
in the TestStand code:

• Win32 event - SetEvent(), ResetEvent(),
 WaitForEvent() - sleep function, the thread is suspended

until receives the specific event,
 - used mainly for inter-thread synchronization;

• Win32 CriticalSection - protects the shared resources (VME bus,
common files, e.g. common program error file) from a
simultaneous multiple access so maximally one thread

 have a “key” to the specific shared parts of the program;

• Win32 SuspendThread() and ResumeThread()
- could be used for some simple synchronization tasks instead

 of the pair SetEvent() - WaitForEvent();

• shared volatile variable
- universal, platform independent, easily readable;

 - used usually as a status “flag”, often in the pair
 with one of the more sophisticated sync. mechanisms above.

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 14

Host Error HandlingHost Error Handling
• similar to the DSP code (Coding rules):
 - every routine returns a status (except low level routines, where an error is “impossible”);
 - if an error is detected the error handling routine is called:

- host/rod[n] specific,
- general program (low level routines);

/* host specific error routine prototype */
void hostError (const char* fileName, int line, ERROR_ID errorId, struct HOST *host, const char *errorMessage);

/* general program error routine prototype */
void programError(const char* fileName, int line, ERROR_ID errorId, const char *functionName, int functionStatus,

const char *errorMessage);

Input parameters of the error handlig routines are:
 - source file name (C macro __FILE__) - mandatory,
 - line number in this file (C macro __LINE__) - mandatory,
 - errorId (the error code assigned by host) - required,
 - functionName (the name of the function - if any - which returned the error);
 - status - the function return code (if any);
 - pointer to the host[n] struct which contains the status info about the host/rod[n] -
 - required in hostError();
 - optional errorMessage.

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 15

"C" macros __FILE__ and __LINE__ allow a simple tracking of any nested
error from the source to the end.

Both the general program and the host error routines append the error information
to the common error file and also display on the screen.
No special error handling algorithms depending on the error ID are currently
intended inside the error handling routines for the initial testing.
The decision what to do in the case of error (fatal -> abortive return from the
function or move to suspended error state X non fatal -> continue) is done directly
on the place where the error was detected).

More sophisticated error codes and error handling will be introduced in the future.

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 16

LIST TABLE

PrimList Length ReplyList Length

PrimList Index ReplyList Index

Primitive Count ReplyPrim Count

ListHeader

PrimLength(100k+3) RepPrimLn(101k+2)

Primitive Index(0) RepPrim Index(0)

Primitive Id(ECHO)

PrimListTable ReplyListTable

Primitive
Header

PrimTable
Params

Primitive Length RepPrim Lenght

Primitive Index(1) RepPrim Index

Primitive Id

ECHO:
.pattern = 0xFFFFFFFF
 .dataLength = 100k

.outputDataFile=
“Echo0.BIN”

(ECHO e.g.)

Primitive
Table

PrimList Length

PrimList Index

Primitive Count

PrimLength(100k+3)

Primitive Index(0)

Primitive Id (ECHO)

0xFFFFFFFF
0xFFFFFFFF
0xFFFFFFFF

0xFFFFFFFF

(100k)

PRIMITIVE LIST

PrimBuffer

PrimList Length

PrimList Index

Primitive Count

PrimLength(101k+2)

Primitive Index(0)

0xFFFFFFFF
0xFFFFFFFF
0xFFFFFFFF

0xFFFFFFFF

REPLY LIST

ReplyBuffer

(101k)

PrimitiveList PrimitiveList - - ListTable ListTable - - ReplyListReplyList

0x0 (ECHO ID)

ListLength

Checksum
ListTrailer

ListLength

Checksum

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 17

PRIMITIVE LIST
BUILDING[n]

REPLY LIST
PROCESSING[n]

COMMUNICATION
 LOOP

LIST
HANDLER[n]

ListTable FIFO

fifoListCounter

ListTable[0]

ListTable[1]

ListTablel2]

ListT[FIFO_SIZE-1]

ListTable “shift” buffer

-1

+1

PRIM LIST
BUFFER

PrimitiveList[BUILD]

REPLY
BUFFER

ReplyList[PROC]

Li
st

T
ab

le
 P

R
O

C

Li
st

T
ab

le
 E

X
E

C

Li
st

T
ab

le
 B

U
IL

D

MAIN(GUI)
or

CONTROL
THREAD[n]

NewList

List/List/ListTableListTable “voyage” through the program “voyage” through the program

 PARAMS
DATABASE

DATA FILESRod Rod

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 18

The commands for the Rods issued by User from MainThread(GUI) or
programatically from ControlThread in the form of the ListTable are stored in
ListTableFifo.
ListTable struct - a sort of dynamic database used for PrimitiveList "prebuilding",
building and processing its reply data. Length of the ListTable is static (limited
number of primitives in the list) -> no dynamic memory allocation during runtime is
necessary.
The parameters stored in ListTable together with the parameters stored in the common
database or files contain all information necessary for unique "coding" of each
primitive to PrimitiveList and "decoding" its reply data from ReplyList. The main
advantage - ListTable struct should be more "compact" than the corresponding
PrimitiveList.

ListTableFifo used for a temporary storage the ListTables waiting for the execution
 is implemented as a circular buffer with the constant size -> static memory allocation.

ListTableShiftBuffer - the Host must remember information up to last three lists,
since at the same moment one PrimList could be built in the host PrimBuffer (info
stored in ListTableBuild), the second list already transferred to the Rod is executed
by MasterDSP (info in ListTableExec) and the last one - ReplyList from the Host
ReplyBuffer - is processed (info in ListTableProcess).

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 19

Primitive Function

- similar usage to DSP Code (see Damon's talk "DSP Software").
The exact algorithm for the primitive ”prebuilding” into ListTable, building into PrimList
and reply data processing from ReplyList is coded in the primitive function dedicated to
each primitive (resp. primitive ID). The pointer to this function is stored in the common
"array of pointers to the primitive functions":

 /* array of pointers to prim. functions declaration */
 ERROR_CODE (*primitiveFunction[NUMBER_OF_PRIMITIVES])(InputParamsDeclaration);

 /* primitive function declarations */
 ERROR_CODE primFunc_echo[ECHO](InputParamsDeclaration);
 ERROR_CODE primFunc_memTest[MEM_TEST](InputParamsDeclaration);

 /* array initialization */
 primitiveFunction[ECHO]=&primFunc_echo;
 primitiveFunction[MEM_TEST]=&primFunc_memTest;

 /* primitive function calling example */
 int primitiveId=ECHO;
 errorCode=(*primitiveFunction[primitiveId])(inputParams);

The index of each primitive function in the array is equal to its primitiveID, which are
defined “by name” in the header file common for both the Host and the DSPs.
The advantage - instead of long switch structures, any primitive function is called
simply by primitiveID.

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 20

MainProcessThreadMainProcessThread

• main program thread - creates the other threads,
• main task - interaction with the User (LabWindows GUI),

 - controls the Host process,
 - sends commands for the Rod in the form of ListTable
 to ListTableFifo;

 - displays the Rods and Host process status information;
• "fast" commands - bits in VmeCommandRegs are sent directly from
 Main Thread, which has a higher priority than CommunicationThread
 -> VME access guaranteed asap;
• executes some single tasks (which are fast and “safe”) - GUI must not be frozen.

HostControlThreadHostControlThread[n]

• controls and coordinates the execution of time consuming commands and
 procedures specific for Rod[n]/Host[n], which cannot be done in
 MainThread (for example ROD initialization, standard testing routines …).

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 21

HostControlThreadHostControlThread[n] - structure (pseudocode):

ERROR_CODE hostControl(uint rodNumber){

 while(programExit==FALSE) {
/* thread suspended */

 SuspendCurrentThread(); /* waitForEvent(commandReady); */

switch(command){

 case ROD_INIT:
 /* load DSP software, wait for InitBit … */

 errorCode=rodInit(hostNumber);
 if(errorCode!=SUCCES){

 errorHandler(__FILE__, __LINE__, “rodInit()”, errorCode);
 }

 break;
 case TEST_A: /* example */
 errorCode=testA(rodNumber); /* Rod test A */

 if(errorCode!=SUCCES){
 errorHandler(__FILE__, __LINE__, “testA()”, errorCode);

 }
 break;
 case TEST_B:
 .
 etc.

}
 controlThreadBusy=FALSE;
 }
 return(SUCCESS);
}

MainThread (GUI)
 ResumeThread(hostControl);
command= ROD_INIT (e.g.);
controlThreadBusy=TRUE;

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 22

PrimitiveListBuildingThreadPrimitiveListBuildingThread[n][n]

• “builds” PrimitiveList in the Host local mirror of the PrimitiveListBuffer
 according to the commands issued by Main or Control thread and stored in
 the form of ListTable in ListTableFifo.

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 23

BUILD IDLE

 if(fifoListCounter==0)
 waitForEvent(listFifoNotEmpty);
 copy ListTable[0] to listBuild;
 decrement(listCounter);

BUILD_BUSY

/* Build primitive list */

add listHeader, assign listIndex (also in ListTable);
for(primIndex=0; primIndex<primCount; ++primIndex){
 errorCode=(*primitiveFunction[primitiveId]) (BUILD,&primTable[primIndex],&buffer);
 if(errorCode!=SUCCES){
 errorHandler(__FILE__, __LINE__, “primitiveFunction()”, errorCode);
 break;
 }
}
add listTrailer;
calculateChecksum();

PRIM_LIST_BUILT

 primListBuilt=TRUE;
 waitForEvent(primListBuildGoToIdle);

 ++listIndex;

BUILD_ERROR

waitForEvent(primListBuildGoToIdle);

error
no yes

GUI or
CONTROL
THREAD

LIST HANDLER
Communication

Loop
primListBuilt=FALSE;

PrimitiveListBuildingThread[n]

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 24

CommonCommunicationLoopThread CommonCommunicationLoopThread - “polling loop”- “polling loop”

• grants and distributes the access to the shared VME bus between all
 RODs in the crate on the “round robin” basis,

• periodically monitors the status of all Rods in the crate(RODStatusRegister),

• contains ListHandler and textBufferHandlers (error, info, diagnostic) routines
which are responsible for the data transfers from and to MasterDSP.

The proper working all of these tasks is absolutely essential for the TestStand
software functionality => must be extremely robust - should run “forever”.

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 25

n = n + 1

n <= MaxN

n = 1

Yes

No

ROD[n] enabled

Yes

No

Start/Reset

CommunicationLoopThreadCommunicationLoopThread

BuffersHandler[n]

 ListHandler[n]

Read(RodStatusReg[n])VME

ErrorBuffer
Handler[n]

InfoBuffer
Handler[n]

DiagnosticBuffer
Handler[n]

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 26

ListHandler[n] routine

• data transfer and handshaking between ROD[n] and Host[n],
 i.e. moving PrimitiveLists to MasterDSP (PrimListBuffer) and
 ReplyLists back (ReplyListBuffer);
 - synchronization with MasterDSP and the list building and processing
 threads.

• The Host implementation of the“Communication protocol” is
 a state machine.

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 27

IDLE

POLL
DspAck_SET

WRITE
PRIM_LIST

READ
REPLY_LIST

ERROR

primListBuilt==1

DspAck==0

DspAck==1 &&
outListRdy==1

lis
tH

an
dlG

oT
oI

dle

RepListProcessBusy==0
DspAck

==1 &
&

outListRdy
==0 VmeCommandReg

error

error

errorerror

success

success

PrimListBuilding
Thread

Main(GUI) or ControlThread
 setEvent(listHandlGoToIdle)

CommLoop(RodStatusReg)

RepListProcessing
Thread

CommLoop(RodStatusReg)

setBit(inListRdy=1)

RepListProcessBusy=1;
setEvent(repListProcess)
;

PrimListBuilt=0;
setEvent(PrimListBuilt
 GoToIdle);

ListHandler[n] - state machine

POLL
DspAck_CLEAR

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 28

TextBufferHandler[n] routine (error, info and diagnostic)

• readout text (error, info, diagnostic) messages from MasterDSP via VME,
 i.e. moving data from the MasterDSP textBuffers to the Host local
 textBuffers + synchronization handshaking with the Master;

 - the current status information about the text buffer (data start, data end, mode,
 overflow flag) is stored in the MasterDSP memory location different from
 the corresponding textBuffer, so this TextBufferInfoStruct must be always read
 before each message readout;
 - addresses of these textBufferInfoStructs are passed into the ReplyBuffer
 immediately after the MasterDSP initialization and consequently read by Host.

• when the message transfer is done, the textBuffProcessingThread is asked
 for the message “processing”;

• implementation - state machine:

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 29

IDLE

SRtxtBuffNotEmpty==1&&
textBuffProcessBusy==0

setBit(CrReadBuffRqstBit=1);

READ_RQ
SET

ERROR

error

error
(timeout)

success

TxtBuffProcessing
Thread

Main(GUI) or ControlThread
 setEvent(txtBuffHandlGoToIdle)

CommLoop(RodStatusReg)

VmeCommandRegtxtB
uffHandlGoToIdle

ReadTextBuffStruct();
ReadTextBuffer();

textBuffProcessBusy=TRUE;
setEvent(textBuffProcess);
clearBit(CrReadBuffRqstBit=0);

error

VmeCommandReg

BUFFER
READOUT

SRtxtBuffNotEmpty==0

CommLoop(RodStatusReg)

success

TextBufferHandler[n] - state machine (error, info, diag)

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 30

ReplyListProcessingThread[n]

• processes ReplyList stored in the local buffer, i.e. checks the validity of the
 data (checksum, length and consistency with the corresponding ListTableReply
 resp. PrimitiveList etc.) and then sends out the data to the predefined destinations
 (memory locations/database, files ...),

• common primitiveFunction (resp. dereference of the pointer to the primFunc)
 is used for the “decoding” of each “ReplyPrimitive” from ReplyList.

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 31

REP IDLE

 waitForEvent(replyListProcess);

REP_BUSY

/* Check list consistency with ListTableProcess; if(error) goto ERROR state */
 check listIndex==indexExpected; /* check listHeader and trailer */
 check listLength== lengthExpected;
 check repPrimCount==countExpected;
 calculate Checksum==0 (optional);

/* RepList processing */
 for(i=0; i<repPrimCount; ++i){
 check consistency repPrimHeader==headerExpected (repPrimLength, repPrimIndex);
 /* RepPrimitive processing - send data to memory-database/files destinations */
 errorCode=(*primitiveFunction[primitiveId]) (PROCESS,&primTable[primIndex],&buffer);
 if(errorCode!=SUCCES)
 errorHandler(__FILE__, __LINE__, “primitiveFunction()”, errorCode);
 break;
 }
 }

RepListProcessBusy =FALSE;
REP_ERROR

waitForEvent(repListProcGoToIdle);

error
no yes

MAIN (GUI) or
CONTROL
THREAD

LIST HANDLER
Communication

Loop

ReplyListProcessingThread[n]

RepListProcessBusy
=TRUE;

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 32

TextBuffersProcessingThread[n]

• processes text messages (print to screen, save to file ...)
 generated by Rod[n] and stored in the host local copies of
 the error, info and diagnostic buffers;

• one common processing thread for all text buffers is fairly sufficient,
 since the text buffers are and probably will be relatively small ->
 -> message processing shouldn’t take long time and
 we don’t expect a traffic jam on these buffers, do we?

• more sophisticated “decoding” of the Rod error messages
 and the consecutive actions depending on the passed ErrorCode
 will be implemented in the future.

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 33

/* thread suspended */
waitForEvent(textBuffProcess);

/* errorBuff processing */
 save message to errorBuff file;
 display on the screen;
 (decode error and call appropriate
 error subroutine ...);
 errorBuffProcessBusy=FALSE;

errorBuffProcessBusy
Yes

No

/* infoBuff processing */
 save message to infoBuff file;
 display on the screen;
 infoBuffProcessBusy=FALSE;

infoBuffProcessBusy
Yes

No

diagBuffProcessBusy
Yes

No

/* diagBuff processing */
 save message to diagBuff file;
 display on the screen;
 diagBuffProcessBusy=FALSE;

errorBuff
Handler[n]

infoBuff
Handler[n]

diagBuff
Handler[n]

CommLoopThread

TextBuffersProcessingThread[n]

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 34

Current software statusCurrent software status

Has been done:

•"first iteration" of the Test Stand program has been designed and all major
 parts implemented:

- process structure, threads,
- error handling,
- basic user interface,

 - communication with the rods,
- general primitive implementation,

 - FPGA "management" (flash memories, status and command registers
communication),

• Basic functionality of the program successfully tested :
 - Host communication with EVM DSP(PC module) running real MasterDSP code,
 - behavior in the “multirod” environment with Rods simulated by the software on PC.

-> Since both the Host program and MasterDSP almost doesn't know, if they talk
 to the virtual or real counterpart, we don't expect major software problems
 in the Host-MasterDSP communication in the real word.

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 35

 Interface HOST - ROD simulation

HPIC

HPIA

HPID with autoinc

HPID without autoinc

RodStatusReg0

RodStatusReg1

RodStausReg2

VmeCommandReg0

VmeCommandReg1

PrimBuffAddrPtr(HPI Addr)

ReplyBuffAddrPtr(HPI Addr)

ErrorBuffAddrPtr(HPI Addr)

InfoBuffAddrPtr(HPI Addr)

DiagBuffAddrPtr(HPI Addr)

Pseudo “VME” address = sharedMemoryStartAddr + rodNumber(n) * SHARED_MEM_SIZE_PER_ROD(0x38)+ relativeRegAddr (0x00 - 0x34);

TextBuffsStruct HPI addresses (MasterDSP memory space) are read after Rod Initialization from ReplyBuffer, like in reality.

SHARED MEMORY (32bit regs)
0x00

0x04

0x08

0x0C

0x10

0x14

0x18

0x1C

0x20

0x34

0x24

0x28

0x2C

0x30

Rel.addr.:

HPI - HRDY event
[n]

HPI - FETCH event
[n]

ROD Simulation
ProcessHOST Process

n=0, 1, … 15

ROD[n]
(MasterDSP)

Host[n]

HPIHPIVME

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 36

 Interface VME - HPI (ROD simulation)

HCNTL[1:0]

HHWIL

HR/W
 [31:0]
HD[15:0]

HDS1
HDS2
HCS

HAS

HBE[1:0]

HRDY

HINT

A22, A21

A1

WRITE

D15-D0

DS

BE

DTACK

IACK

HPIA

HPID

HPIC

VME Master DSP - HPI
A3, A2

(A1)

WRITE

D31-D0

DS(FETCH)

HRDY

X

X

X

Simulation:
WRITE signal - bit in HPIC (this bit doesn’t exist in the real HPIC);
HRDY signal - Win32 HRDYevent + HRDY bit in HPIC;
DATA STROBE(FETCH) signal - Win32 FETCHevent + FETCH bit in HPIC.

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 37

ROD Simulation Process - structure

DISPLAY
THREAD

[n]

DSP
POLLING
THREAD

[n]

HPI
THREAD

[n]

MAIN THREAD

ROD[n]

n = 0,1…(15)

The simulated MasterDSP knows just one primitive - ECHO.
This is absolutely sufficient for the Host testing, since we only need to send any valid
PrimList to Rod and read the valid ReplyList back (primitiveList decoding and its
“real” execution can be tested directly with EVM DSP running MasterDSP code).
Passing the error and diagnostic messages is also implemented in this simulation.

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 38

POLL
inListRdy

SET

/* set status bits*/
SRbusy=1; SRexecuting=1;

/* write listIndex to statusReg */
rodStatusReg1=listIndex&0xF;

/* write message to debug buffer */
if(diagBuffState!=FROZEN){
 txtAddBufferEntry(&diagBuffStruct, message);
 SRdiagBuffNotEmpty=1;
}
calculateListCheckum();
/* if checksum error write message to error buff */
if(errorBuffState!=FROZEN){
 txtAddBufferEntry(&errorBuffStruct, message);
 SRerrorBuffNotEmpty=1;
}
/* list “execution” */
copy PrimList from PrimBuff to Reply buffer;
sleep(executionDelay);

/* set status bits*/
SRexecuting=0; SRoutListRdy=1; SRdspAck=1;
/* change state */
state=POLL_inListRdy_CLEAR;

CRinListRdy
==0 Sleep(100);

errorBuffStateMachine();
infoBufferStateMachine();
diagBufferStateMachine();

State

POLL
inListRdy
CLEAR

CRinListRdy
==1

Note: These diagrams are intended only for the Host program simulation
and don’t describe the real structure of the MasterDSP code!!

CRinListRdy==1 CRinListRdy==0

/* set status bits */
SRoutListRdy=0; // not done by real Master
SRdspAck=0;
Srbusy=0;

/* change state */
state=POLL_inListRdy_SET;

TXT_BUFF
IDLE

TXT_BUFF
FROZEN

CRtxtReadRq==1&&
SRbuffNotEmpty==1

SRbuffNotEmpty=0;

CRtxtReadRq==0

txtMarkBuffRead(txtBuffStruct);

textBuffStateMachine()

DSP Polling Loop Thread (only for Host simulation)

ATLAS SCT and pixel off-detector electronics PDR, LBNL, 31 July 2000 39

Test Stand software development plansTest Stand software development plans
To do for the initial testing in September:
- implement all necessary primitives,
- complete the Rod initialization routines,
- complete the user interface,
- improve the error handling,
- continue testing, code "cleaning” and tuning (some small design changes possible) ...

Plans from today to the end 2000
- preparation for the system test, include the TIM and BOC management into
 the program, add more primitives needed for the system test;
- detailed preparation for a simple DAQ (refer to John Hill's talk "SCT ROD
 Crate DAQ");
• In general simply:
 - testing, testing, testing (V.I.Lenin),
 - continuous improvement of the software, adding new primitives, program features,
 implement "user" desires and recommendations.

The more advanced and more "final" version of the Test Stand software ready for the user
evaluation certainly should be available by the end of November after the first system tests.

• the exact schedule - refer to Richard Jared’s “ROD Schedule” presentation.

